Rozdíl mezi obdélníkem a kosočtvercem

Obsah:

Rozdíl mezi obdélníkem a kosočtvercem
Rozdíl mezi obdélníkem a kosočtvercem

Video: Rozdíl mezi obdélníkem a kosočtvercem

Video: Rozdíl mezi obdélníkem a kosočtvercem
Video: Chemia. Spektrofotometria UV-VIS 2024, Listopad
Anonim

Obdélník vs kosočtverec

Kosočtverec a obdélník jsou čtyřúhelníky. Geometrie těchto obrazců byla lidem známa po tisíce let. Toto téma je výslovně zpracováno v knize „Elements“, kterou napsal řecký matematik Euclid.

Paralelogram

Paralelogram lze definovat jako geometrický útvar se čtyřmi stranami, přičemž protilehlé strany jsou vzájemně rovnoběžné. Přesněji se jedná o čtyřúhelník se dvěma páry rovnoběžných stran. Tato paralelní povaha dává mnoho geometrických charakteristik rovnoběžníkům.

obraz
obraz
obraz
obraz
obraz
obraz
obraz
obraz

Čtyřúhelník je rovnoběžník, pokud jsou nalezeny následující geometrické charakteristiky.

• Dva páry protilehlých stran mají stejnou délku. (AB=DC, AD=BC)

• Dva páry protilehlých úhlů mají stejnou velikost. ([latex]D\klobouk{A}B=B\klobouk{C}D, A\klobouk{D}C=A\klobouk{B}C[/latex])

• Pokud jsou sousední úhly doplňkové [latex]D\hat{A}B + A\hat{D}C=A\hat{D}C + B\hat{C}D=B\hat {C}D + A\hat{B}C=A\hat{B}C + D\hat{A}B=180^{circ}=\pi rad[/latex]

• Dvojice stran, které jsou proti sobě, je rovnoběžná a stejně dlouhá. (AB=DC & AB∥DC)

• Úhlopříčky se vzájemně půlí (AO=OC, BO=OD)

• Každá úhlopříčka rozděluje čtyřúhelník na dva shodné trojúhelníky. (∆ADB ≡ ∆BCD, ∆ABC ≡ ∆ADC)

Součet čtverců stran se dále rovná součtu čtverců úhlopříček. To je někdy označováno jako zákon rovnoběžníku a má široké použití ve fyzice a inženýrství. (AB2 + BC2 + CD2 + DA2=AC2 + BD2)

Každou z výše uvedených charakteristik lze použít jako vlastnosti, jakmile se zjistí, že čtyřúhelník je rovnoběžník.

Plochu rovnoběžníku lze vypočítat jako součin délky jedné strany a výšky na opačné straně. Plochu rovnoběžníku lze tedy uvést jako

Plocha rovnoběžníku=základna × výška=AB×h

obraz
obraz
obraz
obraz

Plocha rovnoběžníku je nezávislá na tvaru jednotlivého rovnoběžníku. Závisí pouze na délce základny a kolmé výšce.

Pokud lze strany rovnoběžníku znázornit dvěma vektory, lze plochu získat velikostí vektorového součinu (křížového součinu) dvou sousedních vektorů.

Pokud jsou strany AB a AD reprezentovány vektory ([latex]\overrightarrow{AB}[/latex]) a ([latex]\overrightarrow{AD}[/latex]), plocha rovnoběžník je dán vztahem [latex]\left | \overrightarrow{AB}\times \overrightarrow{AD} right |=AB\cdot AD \sin \alpha [/latex], kde α je úhel mezi [latex]\overrightarrow{AB}[/latex] a [latex]\overrightarrow{AD}[/latex].

Následují některé pokročilé vlastnosti rovnoběžníku;

• Plocha rovnoběžníku je dvojnásobkem plochy trojúhelníku vytvořeného některou z jeho úhlopříček.

• Plocha rovnoběžníku je rozdělena na polovinu libovolnou přímkou procházející středem.

• Jakákoli nedegenerovaná afinní transformace přenese rovnoběžník na jiný rovnoběžník

• Rovnoběžník má rotační symetrii řádu 2

• Součet vzdáleností od jakéhokoli vnitřního bodu rovnoběžníku ke stranám je nezávislý na umístění bodu

Rectangle

Čtyřúhelník se čtyřmi pravými úhly se nazývá obdélník. Je to speciální případ rovnoběžníku, kde úhly mezi jakýmikoli dvěma sousedními stranami jsou pravé.

obraz
obraz
obraz
obraz

Kromě všech vlastností rovnoběžníku lze při zvažování geometrie obdélníku rozpoznat další charakteristiky.

• Každý úhel ve vrcholech je pravý úhel.

• Úhlopříčky jsou stejně dlouhé a navzájem se půlí. Proto jsou půlené úseky také stejně dlouhé.

• Délku úhlopříček lze vypočítat pomocí Pythagorovy věty:

PQ2 + PS2 =SQ2

• Vzorec plochy se redukuje na součin délky a šířky.

Plocha obdélníku=délka × šířka

• Mnoho symetrických vlastností se nachází na obdélníku, například;

– Obdélník je cyklický, kde všechny vrcholy mohou být umístěny na obvodu kruhu.

– Je rovnoúhlý, kde jsou všechny úhly stejné.

– Je izogonální, kde všechny rohy leží na stejné symetrické dráze.

– Má reflexní symetrii i rotační symetrii.

Rhombus

Čtyřúhelník se všemi stranami stejně dlouhými je známý jako kosočtverec. To je také jmenováno jako rovnostranný čtyřúhelník. Má se za to, že má tvar kosočtverce, podobný tomu na hracích kartách.

obraz
obraz
obraz
obraz
obraz
obraz
obraz
obraz

Rhombus je také speciální případ rovnoběžníku. Lze jej považovat za rovnoběžník se všemi čtyřmi stranami stejnými. A má následující speciální vlastnosti, kromě vlastností rovnoběžníku.

• Úhlopříčky kosočtverce se vzájemně půlí v pravém úhlu; úhlopříčky jsou kolmé.

• Úhlopříčky půlí dva protilehlé vnitřní úhly.

• Alespoň dvě ze sousedních stran mají stejnou délku.

Plochu kosočtverce lze vypočítat stejnou metodou jako rovnoběžník.

Jaký je rozdíl mezi kosočtvercem a obdélníkem?

• Kosočtverec a obdélník jsou čtyřúhelníky. Obdélník a kosočtverec jsou speciální případy rovnoběžníků.

• Plochu libovolného lze vypočítat pomocí vzorce základ × výška.

• S ohledem na úhlopříčky;

– Úhlopříčky kosočtverce se vzájemně půlí v pravém úhlu a vytvořené trojúhelníky jsou rovnostranné.

– Úhlopříčky obdélníku jsou stejně dlouhé a navzájem se půlí; půlené úseky jsou stejně dlouhé. Úhlopříčky půlí obdélník na dva shodné pravoúhlé trojúhelníky.

• S ohledem na vnitřní úhly;

– Vnitřní úhly kosočtverce jsou půleny úhlopříčkami

– Všechny čtyři vnitřní úhly obdélníku jsou pravé.

• S ohledem na strany;

– Protože jsou všechny čtyři strany v kosočtverci stejné, čtyřikrát se čtverec strany rovná součtu čtverců úhlopříčky (pomocí zákona o rovnoběžnosti)

– V obdélnících se součet čtverců dvou sousedních stran rovná čtverci úhlopříčky na koncích. (Pythagorovo pravidlo)

Doporučuje: