Rozdíl mezi rozptylem a šikmostí

Rozdíl mezi rozptylem a šikmostí
Rozdíl mezi rozptylem a šikmostí

Video: Rozdíl mezi rozptylem a šikmostí

Video: Rozdíl mezi rozptylem a šikmostí
Video: Geocentric vs Heliocentric Model of the Universe 2024, Listopad
Anonim

Rozptyl vs šikmost

Ve statistice a teorii pravděpodobnosti musí být pro účely srovnání často variace v distribucích vyjádřena kvantitativním způsobem. Disperze a Skewness jsou dva statistické koncepty, kde je tvar distribuce prezentován v kvantitativním měřítku.

Více o Dispersion

Ve statistice je rozptyl variací náhodné veličiny nebo jejího rozdělení pravděpodobnosti. Je to míra toho, jak daleko leží datové body od centrální hodnoty. Pro kvantitativní vyjádření se v deskriptivní statistice používají míry rozptylu.

Variance, standardní odchylka a mezikvartilový rozsah jsou nejčastěji používané míry rozptylu.

Pokud mají hodnoty dat určitou jednotku, mohou mít vzhledem k měřítku stejné jednotky i míry rozptylu. Interdecilový rozsah, rozsah, střední rozdíl, střední absolutní odchylka, průměrná absolutní odchylka a směrodatná odchylka vzdálenosti jsou míry rozptylu s jednotkami.

Naproti tomu existují míry disperze, které nemají žádné jednotky, tj. bezrozměrné. Rozptyl, variační koeficient, kvartilový koeficient rozptylu a relativní střední rozdíl jsou míry rozptylu bez jednotek.

Rozptyl v systému může být způsoben chybami, jako jsou instrumentální a pozorovací chyby. Také náhodné variace ve vzorku samotném mohou způsobit odchylky. Je důležité mít kvantitativní představu o odchylkách v datech, než ze souboru dat uděláte jiné závěry.

Více o Skewness

Ve statistice je šikmost mírou asymetrie rozdělení pravděpodobnosti. Zešikmení může být pozitivní nebo negativní, nebo v některých případech žádné. Lze to také považovat za míru odchylky od normální distribuce.

Pokud je šikmost kladná, pak je většina datových bodů vystředěna nalevo od křivky a pravý konec je delší. Pokud je šikmost záporná, většina datových bodů je vystředěna směrem k pravé straně křivky a levý konec je poměrně dlouhý. Pokud je šikmost nula, pak je populace normálně rozložena.

V normálním rozdělení, tedy když je křivka symetrická, mají průměr, medián a modus stejnou hodnotu. Pokud není šikmost nula, tato vlastnost neplatí a průměr, modus a medián mohou mít různé hodnoty.

Pearsonův první a druhý koeficient šikmosti se běžně používají k určení šikmosti rozdělení.

Pearsonův první kávový zkreslení=(střední hodnota – režim) / (směrodatná odchylka)

Pearsonovo druhé vychýlení coffeicent=3 (střední hodnota – režim) / (satndardní odchylka)

V citlivějších případech se používá upravený Fisher-Pearsonův standardizovaný momentový koeficient.

G={n / (n-1)(n-2)} ∑i=1 ((y-ӯ)/s)3

Jaký je rozdíl mezi rozptylem a šikmostí?

Rozptyl se týká rozsahu, ve kterém jsou rozmístěny datové body, a zešikmení se týká symetrie rozložení.

Jak míry rozptylu, tak šikmosti jsou popisné míry a koeficient šikmosti udává tvar rozložení.

Měry rozptylu se používají k pochopení rozsahu datových bodů a odchylky od průměru, zatímco šikmost se používá k pochopení tendence k variaci datových bodů do určitého směru.

Doporučuje: